Example 1: Product mix problem with diminishing profit margin.
Your company manufactures TVs, stereos and speakers, using a common parts inventory of power supplies, speaker cones, etc. Parts are in limited supply and you must determ ne the most profitable mix of products to build. But your profit per unit built decreases wit volume because extra price incentives are needed to load the distribution channel.

Part Name			TV set	Stereo	Speaker	
	Number to Build->		100	100	100	
	Inventory	No. Used				
Chassis	450	200	1	1	0	
Picture Tube	250	100	1	0	0	Diminishing Returns Exponent: 0.9
Speaker Cone	800	500	2	2	1	
Power Supply	450	200	1	1	0	
Electronics	600	400	2	1	1	

By Product	$\$ 4,732$	$\$ 3,155$	$\$ 2,208$
Total	$\mathbf{\$ 1 0 , 0 9 5}$		

Example 2: Transportation Problem.
Minimize the costs of shipping goods from production plants to warehouses near metropolitan demand centers, while not exceeding the supply available from each plant and meeting the demand from each metropolitan area.

Plants:	Number to ship from plant x to warehouse y (at intersection)					
	Total	San Fran	Denver	Chicago	Dallas	New York
S. Carolina	5	1	1	1	1	1
Tennessee	5	1	1	1	1	1
Arizona	5	1	1	1	1	1
Totals:		3	3	3	3	3
Demands	Whse -->	180	80	200	160	220
Plants:	Supply	Shipping costs	from pla	x to war	use y (at	intersection)
S. Carolina	310	10	8	6	5	4
Tennessee	260	6	5	4	3	6
Arizona	280	3	4	5	5	9
Shipping:	\$83	\$19	\$17	\$15	\$13	\$19

Example 3: Personnel scheduling for an Amusement Park.
For employees working five consecutive days with two days off, find the schedule which meets demand from attendance levels while minimizing payroll costs.

Example 4: Working Capital Management.

Determine how to invest excess cash in 1-month, 3-month and 6-month CDs so as to
maximize interest income while meeting company cash requirements (plus safety margin)

$\begin{aligned} & \text { 1-mo CDs: } \\ & \text { 3-mo CDs: } \\ & \text { 6-mo CDs: } \end{aligned}$	Yield 1.0\% 4.0\% 9.0\%	$\begin{gathered} \text { Term } \\ 1 \\ 3 \\ 6 \end{gathered}$		Purchase CD 1, 2, 3, 4, 5 1 and 4 1	s in months and 6	Total	Interest Earned: \$7,700
Month:	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	End
Init Cash:	\$400,000	\$205,000	\$216,000	\$237,000	\$158,400	\$109,400	\$125,400
Matur CDs:		100,000	100,000	110,000	100,000	100,000	120,000
Interest:		1,000	1,000	1,400	1,000	1,000	2,300
1-mo CDs:	100,000	100,000	100,000	100,000	100,000	100,000	
3-mo CDs:	10,000			10,000			
6-mo CDs:	10,000						
Cash Uses:	75,000	$(10,000)$	$(20,000)$	80,000	50,000	$(15,000)$	60,000
End Cash:	\$205,000	\$216,000	\$237,000	\$158,400	\$109,400	\$125,400	\$187,700

-290000

Example 5: Efficient stock portfolio.
Find the weightings of stocks in an efficient portfolio which maximizes the portfolio rete of
return for a given level of risk. This worksheet uses the Sharpe single-index model; you
can also use the Markowitz method if you have covariance terms available.

Risk-free rate	6.0%	Market variance	3.0%
Market rate	15.0%	Maximum weight	100.0%

| | Beta | ResVar | Weight | *Beta | *Var. |
| :--- | :--- | :--- | ---: | :--- | ---: | ---: |
| Stock A | 0.80 | 0.04 | 20.0% | 0.160 | 0.002 |
| Stock B | 1.00 | 0.20 | 20.0% | 0.200 | 0.008 |
| Stock C | 1.80 | 0.12 | 20.0% | 0.360 | 0.005 |
| Stock D | 2.20 | 0.40 | 20.0% | 0.440 | 0.016 |
| T-bills | 0.00 | 0.00 | 20.0% | 0.000 | 0.000 |
| | | | | | |
| Total | | | Return | | Variance |

Maximize Return: A21:A29 Minimize Risk: D21:D29

0.1644	
5	
1	
1	
1	
1	
1	
1	
1	
1	0.07077

Example 6: Value of a resistor in an electrical circuit.
Find the value of a resistor in an electrical circuit which will dissipate the charge to 1
percent of its original value within one twentieth of a second after the switch is closed.

$l /\left(L^{*} \mathrm{C}\right)$	1250
$\left(\mathrm{R} /\left(2^{*} \mathrm{~L}\right)\right)^{\wedge} 2$	351.5625
SQRT(B15-B16)	29.97395
COS(T*B17)	0.072037
$-\mathrm{R}^{*} /\left(2^{*} \mathrm{~L}\right)$	-0.9375
Q0*EXP(B19)	3.524451

